
HW programming guide for calculators TI–58/59 1

Calculators TI–58/59
HW programming guide

written by
Hynek Sladký

Block diagram

Calculators consist of below mentioned ICs:

TMC 0501 Control unit (CPU); contains 7-segment drivers and keyboard inputs

TMC 0582
TMC 0583

Main program memory (SCOM); contains constant memory, data registers and scanning
output drivers for display and keyboard (1 double SCOM IC: 2.5Kword + 32 constants + 8
data registers)

TMC 0571 Additional program memory (13-bit „firstROM“; 1Kword; mostly printer routines)

TMC 0598 Data memory (RAM) (240 bytes/IC; 1 variable = 8 bytes/program steps; 1IC = 30
variables/240 program steps)

TMC 054x User module (8-bit „secondROM“ for 5000 bytes)

TP 0301 Clock generator (resonator 455kHz ÷ 2 (RUN) or ÷ 8 (IDLE))

© 2014 Hynek Sladký; sladky@mujmail.cz

mailto:sladky@mujmail.cz

2 HW guide for calculators TI–58/59

TI-59 Schematics

Power supply
Signal Vmin Vnom Vmax Current

Bat 3,3 3,6 3,9 160mA „0.“; 220mA „8888888888.“

Vdd -10.5 -10.0 -9.5 40mA max

Vgg -15.3 -15.8 -16.3 18mA max

© 2014 Hynek Sladký; sladky@mujmail.cz

mailto:sladky@mujmail.cz

HW programming guide for calculators TI–58/59 3

Signals
Signal Amplitude 10k → Vss 10k → Vampl Ri

PHI1, 2 -15V 0.25V 0.15V 100-166

IRG -10V 0.75V 0.6V 400-500

EXT -10V 1.5V 0.7V 466-1000

IDLE -10V 1.5V 0.85V 566-1000

I/O -10V 1.2V 0.5V 333-800

Dx -10V
active 0V/330us
Key scan?: -2.5V/18us

Key -10V
open collector

Segment -2.5V

Processor TMC 0501
U U

seg DP 1 out out 28 seg G D15 1 28 D14

seg B 2 out 27 Vgg Vgg 2 OVER 27 D13

seg A 3 out 26 Vdd Vdd 3 M-MSD 26 D12

seg F 4 out CPU io 25 IO1 IO1 4 SCOM 25 D11

seg C 5 out TMC io 24 IO2 IO2 5 TMC 24 D10

seg D 6 out 501 io 23 IO4 IO4 6 058x 23 D9

seg E 7 out io 22 IO8 IO8 7 22 D8

key T 8 in in 21 IRG IRG 8 21 D7

key S 9 in out 20 IDLE IDLE 9 20 D6

key R 10 in io 19 EXT EXT 10 19 D5

key Q 11 in in 18 PHI2 PHI1 11 18 D4

key P 12 in in 17 PHI1 PHI2 12 M-LSD 17 D3

key O 13 in 16 Vss Vss 13 E-MSD 16 D2

key N 14 in out 15 seg H D0 14 E-LSD 15 D1

Signals busy and FlagB are mentioned in U.S.pat 3900722 (see figure 8b sheet 2, pins 29 and 30).
They are not connected to IC pins here. Although BUSY instruction is used in firmware... This
functionality is linked with KR signal... Moreover, signal KR is not scanned in firmware at all.

Display
Digit functions:

D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2

C+/- Mantissa

C+/- Mantissa +/- Exponent

A[13]
fA[14]

A[12] A[11] A[10] A[9] A[8] A[7] A[6] A[5] A[4] A[3] A[2]

digit 12 = SH = FLGA => “C“ (calculate mode) is controlled with bit flgA.14 in IDLE and with all flgA bits

© 2014 Hynek Sladký; sladky@mujmail.cz

mailto:sladky@mujmail.cz

4 HW guide for calculators TI–58/59

in RUN mode; SG+DPT function normally (i.e. minus is displayed for values 2, 3 etc.)
Flashing display = calculation error
DPT is controlled with comparator to R5 value. If R5 equals digit counter, decimal point is on for current
digit.
Decoder in CPU (see USpat) contains: 0123456789AbCdEF – values A..F weren't checked as it is not
possible to get hexadecimal values in displayed digits (at least I wasn't able to do these tests).
Display is controlled by registers A and B (see table below). In RUN mode, displaying is disabled except
for FLGA output. In IDLE mode, 7-segment decoder reflect registers A (value) and B (format) values
and state of zero-suppression circuit. Display and keyboard are accessed from D15 down to D0
position.
Register B contains always “display mask”: normal display format is 0, minus display format is 6, space
(positive sign) format is 3, to overcome zero-suppress circuit, format 9 is used. Possible display
characters are summarized in table below:

A 0 1 2 3 4 5 6 7 8 9 A B C D E F

B

0 1 2 3 4 5 6 7 8 9 A b

1 1 2 3 4 5 6 7 8 9 A b

2 " " " " " " " " " A * “ “ “ “

3 A b

4 ' ' ' ' ' ' ' ' ' A b ' ' ' '

5 - ° ° ° ° ° ° ° ° ° A 8 ° ° ° °

6 - - - - - - - - - - A b - - - -

7 A b

8 0 1 2 3 4 5 6 7 8 9 A b

9 0 1 2 3 4 5 6 7 8 9 A b

A “ “ “ “ “ “ “ “ “ “ A b “ “ “ “

B A b

C ' ' ' ' ' ' ' ' ' ' A b ' ' ' '

D ° ° ° ° ° ° ° ° ° ° A b ° ° ° °

E - - - - - - - - - - A b - - - -

F A b

* this digit is combined from b and “; it looks like 8 without top horizontal line.

Number / mask examples:

Number displayed Mask used

-12345678-77 600000009699

_12345678_77 300000009399

-1234567891_ 60000000000_

_____123_45_ 000008003000

Keyboard
Keyboard can be connected to inputs KN, KO, KP, KQ, KR, KS, KT.

© 2014 Hynek Sladký; sladky@mujmail.cz

mailto:sladky@mujmail.cz

HW programming guide for calculators TI–58/59 5

Calculator uses for keyboard inputs KO, KP, KQ, KS and KT only. KR is never used in KEY mask, it
seems that KR is in reality BUSY input as this pin is used while executing TST BUSY instruction. This
input is used for card reader and printer cooperation.
Input KR.D7 is used for TI-58 HW detection, KR.D10 is used for magnetic card insert detection
(normally closed).
Inputs KR, KP a KN are connected to printer. (KP.D12 = PRINT, KP.D15 = TRACE, KN.D12 = ADV,
KP.D0 = printer connected detection, KR = BUSY/ready)
Keyboard layout:

A'
A

B'
B

C'
C

D'
D

E'
E

2nd INV
log
ln x

CP
CE CLR

Pgm
LRN

P→R
x ↔ t

sin
x2

cos
√ x

tan
1/x

Ins
SST

CMs
STO

Exc
RCL

Prd
SUM

Ind
yx

Del
BST

Eng
EE

Fix
(

Int
)

|x|
÷

Pause
GTO

x = t
7

Nop
8

Op
9

Deg
×

Lbl
SBR

x ≥ t
4

∑+
5

x
6

Rad
–

St flg
RST

If flg
1

D.MS
2

π
3

Grad
+

Write
R/S

Dsz
0

Adv
.

Prt
+/-

List
=

The only difference in TI-58 and TI-59 keyboard is command Write as second function for R/S key on
TI-59 calculator.

Signals PHI1 a PHI2
All ICs are clocked with signals PHI1 and PHI2. Frequency is based on resonator 455kHz. PHI1 and
PHI2 are non-overlapping signals and are generated with half frequency than crystal resonator has.
Active time for PHI1 and PHI2 is always about 1.1µs regardless of IDLE state. In IDLE mode, only the
first from 4 cycles is generated. See waveform below.
One instruction bit period is either 4.7µs or 17.5µs. Execution speed is 14219 ips or 3555 ips. To
analyze IRG+EXT, transfer speed of 56.88kB/s is required. To capture also I/O, 170.628kB/s is
required. In IDLE mode, transfer rate is ¼ of RUN mode.
All output signals are changed after falling edge of PHI1 (IDLE: 360ns, IRG 280ns, EXT 560ns).

© 2014 Hynek Sladký; sladky@mujmail.cz

mailto:sladky@mujmail.cz

6 HW guide for calculators TI–58/59

Signal IDLE
Signal IDLE is used to synchronize instruction cycle and digit count between ICs.
Instruction cycle begins with falling edge. IDLE mode is active when IDLE stays low most of the period
time. RUN mode is active when IDLE is low just one instruction bit time. This RUN↔IDLE transition is
detected while second instruction bit is processed, so first two instruction bits are executed with
previous speed timing. All other bits use new speed timing already.
Display mode (SCOM driver output) is synchronized by transition from RUN to IDLE mode. Instruction
WAIT D1 must precede SET IDLE for correct display / keyboard operation.

Signal EXT
Data are sent with LSb first. First 3 bits PREG, COND, HOLD are always sent from CPU. These bits
control state of instruction execution.

KR[0] KR[15] KR[14] KR[13] KR[12] KR[11] KR[10] KR[9] KR[8] KR[7] KR[6] KR[5] KR[4] HOLD COND KR[1]

A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 PREG

CONSTANT C53 C52 C51 0

DATA high DATA 0

After power-up reset, EXT signal contains value 0000 0000 0000 0xx1 for many instruction cycles to
allow reliable initialization of all ICs, i.e. PREG is active and address is always 0.

PREG
Signal PREG is used to address instruction memory. This bit is automatically set after power-up reset;
this bit can be controlled by KR[1] bit too. Bit KR[1] is automatically cleared after PREG is sent on EXT
bus.
Instruction execution continues even PREG bit is set, so instruction used after SET KR[1] is executed
as well.
Address fields:
A12-A10 chip select

© 2014 Hynek Sladký; sladky@mujmail.cz

mailto:sladky@mujmail.cz

HW programming guide for calculators TI–58/59 7

A9-A7 column select
A6-A0 address
Originally, SCOM contains 1Kw instruction memory. Used double SCOM should have 2Kw instruction
memory, but currently, SCOMs have 2.5Kw of instruction memory. Another 1Kw is in first-ROM.

Address range Size Description

0000 - 09FF 2.5Kw TMC 0582

0A00 - 13FF 2.5Kw TMC 0583

1400 - 17FF 1Kw TMC 0571

1800 - 1FFF 2Kw free

HOLD
Signal HOLD is used to wait for some external signal or to finish instruction execution (eg. WAIT
instruction). This bit blocks address increment, so the same instruction is sent to CPU until HOLD bit is
cleared again.

COND
Bit COND is output from ALU and TST instructions and input for branch instructions.
TST instructions can clear this bit only. Bit is set after BRA instruction is executed. If more than one
BRA instruction is executed in series, COND is set after last BRA instruction.

Signal IRG
Signal IRG transports instructions from SCOM/ROM to CPU. Address counter resides in all ROM
circuits and is automatically updated regarding to PREG and HOLD bits, and for BRA instructions also
regarding to COND bit.
IRG format:
branch cond a9 a8 a7 a6 a5 a4 a3 a2 a1 a0 dec x x x

0 md mc mb ma Rd Rc Rb Ra sub Sc Sb Sa

ALU mask ALU operation Destination

ICs SCOM TMC 0582/3
Regarding U.S.pat 3900722, ICs should have 1Kw of ROM and 2 registers.
Regarding U.S.pat 4153937, double SCOM have 2.5Kw ROM, 32 constants and 8 registers.
Every SCOM contains 32 constants. Only some of them are real constants. Most of them (from address
16 up) are program tokens and work the same way as codes from Library ROM (see text 14.41 and +
Table IV a Table IVa).
Constant/IO is used for ALU operations with constants from SCOM. Constant address is sent on EXT
bus (KR register). Bits KR[11..8] and KR[6..4] are used as Constant address. Currently, only 2x32
constants can be addressed so one bit remains unused. ROM constants are present on I/O bus more
often than ALU operations working with them; it seems that SCOMs have simplified instruction
decoding for constant ROM access using less instruction bits...

SCOM Data Registers
SCOM registers are used to store internal data needed for computing.
SCOM register is accessed after Store F instruction is executed. See RCL/STO instruction with
example provided.
(see U.S.pat 4153937 Fig. 19 and text 19.45...)

© 2014 Hynek Sladký; sladky@mujmail.cz

mailto:sladky@mujmail.cz

8 HW guide for calculators TI–58/59

Digit
Reg.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 IO user flags 0 0 0 RAM address byte Prg
Src
Flag

Last key Fixed
PT

Second ROM address

1 Hierarchy stack: mantissa exponent signs

2

3

4

5

6

7

8

9 List
data
flag

0 0 0 0 0 0 0 0 Current page New page Securit
y code

No. of
RAMs

No. of
pgm

banks

10 RAM or Constant ROM program codes

11 T register

12 Op
code1

Paren
count1

OC2 PC2 OC3 PC3 OC4 PC4 OC5 PC5 OC6 PC6 OC7 PC7 OC8 PC8

Opcode parenthesis count for hierarchy stack

13 Page
in run

0 0 0 0 0 0 RAM memory min
address

RAM memory max
address

No. of
pendin
g ops

Paren
count

Deg
Rad
Grad

14 Level six Level Five Level Four Cond
rtn flag

Super routine stack

15
Super routine stack No. sbr

levels
Level Three Level Two Level One

RAM address
Const. ROM no.

Byte
no.

Prog
src flag

Second ROM address

SCOM constant memory
Both chips contain each 32 constants 16 digits long. Only first 16 of them are real constants. The rest
are program steps. Detailed description is in Uspat 4153937 paragraphs starting with 14.32, constant
data in Table V program step allocation in Table VI.

RAM memory
RAM memory is used to store program and/or data values. Generally, this memory is not used for basic
computing but can be used by some extended functions like statistical calculation etc. Memory is not
retained after calculator is switched off. The only exception is model TI-58C which has low-power
memory chips constantly powered. TI-59 allows to store memory on magnetic cards. TI-58 doesn't have
any way to save RAM contents.
TI-58 has 60 registers (two memory chips) while TI-59 has 120 registers (4 memory chips used).
Because of easier register access, maximum of 100 registers is allowed to be used.
Register can hold 16-digit value or 8 bytes of program.
Memory partitioning is prepared regarding available memory found during calculator start-up routine,
which checks memory cell at address 90. If this cell can hold value, memory is partitioned to default –
see table below. If this cell can't hold value, TI-58 memory layout is selected with 240 program steps
and 30 memory registers. TI-58 offers up to 60 registers maximum with no program space or 480
program steps with no space for registers.
Program steps are saved starting with register 0, whereas values are stored starting from last available

© 2014 Hynek Sladký; sladky@mujmail.cz

mailto:sladky@mujmail.cz

HW programming guide for calculators TI–58/59 9

cell in memory for STO/RCL 00 (i.e. 59 for TI-58 or 119 for TI-59). This layout is useful when memory
partitioning is changed. Saved data doesn't need to be moved.
Memory access is controlled with RAM-OP instruction, addressing and requested operation is
controlled with first IO cycle whereas the second IO cycle provides data to be read or written.
(Memory layout: see U.S.pat 4153937 Fig. 16)
Memory contents can be saved onto magnetic cards. Every card contains card number (i.e. which RAM
page it contains) and requested memory partitioning in saved data.

RAM a RAM b RAM c RAM d

160 program steps 100 addressable memories

240 program steps 90 addressable memories

320 program steps 80 addressable memories

400 program steps 70 addressable memories

default 480 program steps 60 addressable memories

560 program steps 50 addressable memories

640 program steps 40 addressable memories

720 program steps 30 addressable memories

800 program steps 20 mem

880 program steps 10 mem

960 program steps

Card #1 Card #2 Card #3 Card #4

U U

Vgg 1 Library 8 Vss Vdd 1 RAM in 16 EXT

Vdd 2 ROM 7 PHI1 IDLE 2 in in-nc 15 CS = N.C.

IRG 3 in 6 PHI2 PHI1 3 in in-nc 14 SAMP =N.C.

IDLE 4 in io 5 EXT PHI2 4 in in 13 IRG

IO1 5 io in-vss-
nc

12 BSEL1

IO2 6 io in-vss-
nc

11 BSEL0

IO4 7 io io 10 IO8

Vss 8 9 Vdd

Library ROM
Library “Second ROM” chip is used as user changeable library module. This chip contains 5000 bytes
holding library data. Library structure is described in table below (see Fig. 15 in U.S.pat 4153937 and
paragraphs starting with 12.15).
ROM address pointer is part of chip. This pointer works with BCD code. It can be written through EXT
bus one digit with every LOAD PC instruction. Pointer is automatically incremented after instruction
FETCH is processed. Pointer value can be read out with instruction UNLOAD PC.
Address Size Description

0000 1 Number of pages

0001 1 Security code; Master library contains value 00

0002 2 Address of first page/program; MSB first

© 2014 Hynek Sladký; sladky@mujmail.cz

mailto:sladky@mujmail.cz

10 HW guide for calculators TI–58/59

Address Size Description

0004 2 Address of second page/program

...

N 2 Address of last page/program

N+2 2 Address of space after last page/program; this value is used to compute size of last page

N+4 1 First code from first page/program

...

Y-1 1 Last code from last page/program

Y 1

Filled with op-code 92 = Return...

4999 1

Further tables summarize program opcodes and key sequences used to enter these opcodes.
Program opcode table
Code Function Keys Code Function Keys Code Function Keys

00 0 0 34 √x √x 68 No operation 2nd Nop

01 1 1 35 1/x 1/x 69 Operation code 2nd Op

02 2 2 36 Program Page 2nd PGM 70 Radians 2nd Rad

03 3 3 37 Polar → Rectg. 2nd P→R 71 Subroutine call SBR

04 4 4 38 Sine 2nd sin 72 Store in indirect
memory

STO 2nd Ind

05 5 5 39 Cosine 2nd cos 73 Recall indirect
memory

RCL 2nd Ind

06 6 6 40 Indirect addr 2nd IND 74 Add display into
indirect memory

SUM 2nd Ind

07 7 7 41 Single Step SST 75 Minus -

08 8 8 42 Store in mem STO 76 Label 2nd Lbl

09 9 9 43 Recall from mem RCL 77 Go to if x≥t 2nd x≥t

10 E' 2nd E 44 Sum into mem SUM 78 Insert data point 2nd ∑+

11 A A 45 yx yx 79 Mean 2nd x

12 B B 46 Insert pgm code 2nd Ins 80 Grad 2nd Grad

13 C C 47 Clear memories 2nd CMs 81 Reset RST

14 D D 48 Exchange
display and
memory

2nd EXC 82 Hierarchy
address

Not directly
accessible

15 E E 49 Multiply display
into memory

2nd Prod 83 Go to indirect GTO 2nd Ind

16 A' 2nd A 50 Absolute value 2nd |x| 84 Operation code
indirect

2nd Op
2nd Ind

17 B' 2nd B 51 Back step BST 85 Plus +

18 C' 2nd C 52 Exponent entry EE 86 Set Flag 2nd St Flg

19 D' 2nd D 53 ((87 If flag set, go to 2nd If Flg

20 Clear 2nd CLR 54)) 88 Degrees,
minutes,
seconds

2nd D.MS

21 2nd 2nd 55 Divide / 89 π 2nd π

22 Inverse Func INV 56 Delete pgm code 2nd Del 90 List program 2nd List

© 2014 Hynek Sladký; sladky@mujmail.cz

mailto:sladky@mujmail.cz

HW programming guide for calculators TI–58/59 11

Code Function Keys Code Function Keys Code Function Keys

23 LNx LNx 57 Engineering
format

2nd ENG 91 Run/Stop R/S

24 Clear Entry CE 58 Fixed point
format

2nd Fix 92 Return INV SBR

25 Clear CLR 59 Integer 2nd Int 93 Decimal point .

26 2nd 2nd 2nd 60 Degree 2nd Deg 94 Change sign +/-

27 Inverse Func 2nd INV 61 Go To GTO 95 Equals =

28 log 2nd log 62 Indirect pgm
page

2nd Pgm
2nd Ind

96 Write 2nd Write

29 Clear Program 2nd CP 63 Exchange
indirect memory
with display

2nd EXC
2nd Ind

97 Decrement
register and go
to when zero

2nd DSZ

30 Tangent 2nd tan 64 Multiply display
into indirect
memory

2nd Prod
2nd Ind

98 Advance paper 2nd Adv

31 Learn LRN 65 Multiply * 99 Print 2nd Print

32 Exchange
display and T
register

X ↔ T 66 Pause 2nd Pause

33 x2 x2 67 Go to if x = t 2nd x=t

Program codes 82 and 69 have additional parameter. Function codes are summarized in following two
tables:
First digit Function (82) Second digit Hierarchy register

0 Store 0 No operation

1 Recall 1 1

2 Conditional return; second digit is ignored 2 2

3 Sum into 3 3

4 Multiply into 4 4

5 Subtract from 5 5

6 Divide into 6 6

7 “ 7 7

8 “ 8 8

9 “ 9 No operation

Code Function (69)

00 Initialize for alphanumeric printing

01 Fill far left quarter of print buffer

02 Fill next to left quarter of print buffer

03 Fill next to right quarter of print buffer

04 Fill far right quarter of print buffer

05 Print the buffer as filled with OPs 01-04

06 Print display plus contents of OP 4

07 Print asterisk in column number contained in display register

08 List labels

09 Download page

10 Signum

11 Variance

© 2014 Hynek Sladký; sladky@mujmail.cz

mailto:sladky@mujmail.cz

12 HW guide for calculators TI–58/59

Code Function (69)

12 Slope, intercept

13 Correlation

14 y'

15 x'

16 See current partition RAM

17 Repartition RAM

18 If not error – set flag 7

19 If error – set flag 7

20
…
29

Increment memory 0 – 9

30
…
39

Decrement memory 0 – 9

CPU Programming Reference
In this chapter, CPU operating principles will be described from view of programmer. It starts with
register description through instruction groups to full instruction list.
Following diagram shows principal schematics of CPU and data memories. Data paths are shown
there.

© 2014 Hynek Sladký; sladky@mujmail.cz

mailto:sladky@mujmail.cz

HW programming guide for calculators TI–58/59 13

CPU Registers
Registers are divided to two basic groups: digit registers (16 digits long) and bit registers (16 bits long).
Register R5 is out of these two groups; it can be used for both digit and bit operations; moreover, it
holds one digit result of last arithmetic operation.
One digit (4-bit registers) or bit (1-bit registers) is processed every instruction tick. Whole register (16
digits or bits) is processed in instruction cycle.

4-bit Registers
A, B are used for display in IDLE mode or as generic purpose in RUN mode.
C, D are generic purpose registers.
E is used as exchange register for values from A register only.
Number format (see U.S.pat 4153937): 16..4 = mantisa, 3..2 = exponent, 1 = signs.
R5 is used in ALU operations. This register is automatically filled with result from ALU operation on
mask value digit (usually mask LSD). This register can also be used to enter 4-bit constant and to
interact with flag and KR registers.

© 2014 Hynek Sladký; sladky@mujmail.cz

mailto:sladky@mujmail.cz

14 HW guide for calculators TI–58/59

1-bit Registers
Flag A, Flag B are generic purpose flag registers. All bits of Flag A in RUN mode or bit 14 only in IDLE
mode is output to SH/FLGA pin.
KR (keyboard register) is used as output for keyboard scan instruction or as input register from EXT
bus. KR is used as address/data output for EXT signal as well. With PREG bit set, KR is used to
change program counter programmatically.
SR (subroutine register) can be used to exchange SR and KR bits. It can be used to save KR address
before KR is used as input for keyboard or EXT signal or as return address storage for “subroutine” call.

Flag instructions
Instructions used for flag 1-bit registers access.

CLR

CLR reg[bit] flagA, flagB, KR

Clear requested bit in register.
CLR reg flagA, flagB

Clear all bits in flag register.
CLR IDLE

Clear IDLE bit

SET

SET reg[bit] flagA, flagB, KR

Set requested bit in register.
SET KR[1] sets PREG bit for EXT signal and this bit is automatically cleared immediately after
execution. One more instruction is executed after PREG instruction...

SET IDLE

Set IDLE bit. To work properly, this instruction must be preceded with WAIT D1. Transition from RUN to
IDLE mode is used to synchronize SCOM digit counter to CPU digit counter. If this instruction is not
executed in the right digit cycle, digit counter in CPU and SCOM differ; display and keyboard results are
unpredictable.

INV

INV reg[bit] flagA, flagB

Invert requested bit in register.

XCH

XCH reg[bit],reg[bit] flagA, flagB

Exchange bit between registers. Bit is must be the same for both registers.
XCH KR,SR

Exchange all bits between KR and SR registers. Can be used to save address prepared in KR...

MOV

MOV dst[bit],src[bit] flagA, flagB

Copy bit from regS to regD. Bit number must be the same.
MOV KR,EXT

Read EXT signal and store value to KR.

© 2014 Hynek Sladký; sladky@mujmail.cz

mailto:sladky@mujmail.cz

HW programming guide for calculators TI–58/59 15

MOV R5,reg flagA, flagB, KR

Load R5 from KR bits 7..4 or flag bits 4..1.
MOV reg,R5 flagA, flagB, KR

Store R5 to KR bits 7..4 or flag bits 4..1.

TST

TST reg[bit] flagA, flagB, KR

Test requested bit in register. COND is reset when tested bit is set.
TST BUSY

Test BUSY input on CPU (KR input is used for this function). COND is reset if KR input pin is set.
CMP reg[bit],reg[bit] flagA, flagB

Compare bit in flag registers. Bit number must be the same for both registers. COND is reset if selected
bits equal.

INC

INC KR

Increments KR register. Most significant bit is KR[0], least significant bit is KR[4]. KR value 0xFFF
increments to 0x0001, 0xFFF1 increments to 0x0000. See Signal EXT description above.

Arithmetic instructions
Arithmetic instructions consist of three fields:

• mask type
• source and operation type
• destination

Mask type controls which digits are involved in arithmetic operation. Mask also holds constant which is
used for some operations.
Except D0, all digits are BCD, i.e. ALU operation always makes this correction with possible carry to
higher digit(s).
R5 register gets value from highlighted digit after ALU operation is executed (always the first digit
processed).
List of all masks:

Name D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Mantissa Exponent DPT

ALL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DPT 0

DPT1 1

DPTC C

LLSD 1 1

EXP 0 0

EXP 1 0 1

MANT 0 0 0 0 0 0 0 0 0 0 0 0 0

MLSD 5 0 0 0 0 0 0 0 0 0 0 0 0 5

MAEX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MLSD 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

MMSD 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MAEX 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

© 2014 Hynek Sladký; sladky@mujmail.cz

mailto:sladky@mujmail.cz

16 HW guide for calculators TI–58/59

Available operation type is Add, Sub, Shift left, Shift right and No-operation. No-operation is used as
MOV and XCH instruction. Operation type and source registers are linked – not all register
combinations are possible.
ALU has two inputs X and Y. X input can be connected to A or C register or it can be zero. Y input is
connected to B or D register and value is or-ed with IO digit bus. This IO digit bus is driven by mask
constant and by external device. If no device is active, this bus is read as zero. It seems that IO bus is
always either input or output for all ALU operations. Output is enabled explicitly selecting IO as
destination. Otherwise, IO is switched to input mode, if ALU operation is executed.
All possible operation types with source registers are listed in instruction list table.
Overflow/Underflow event is signalized with COND bit cleared.
Some instructions don't use ALU for its operation – these instructions are XCH and Shift right. ALU still
works and it is used to fill R5 register and possibly to drive IO bus if IO output is enabled. Instruction
Shift left uses ALU before shift is made.

Destination controls where ALU result is stored. This field contains also exchange function, i.e. ALU
operation is processed but not stored, and two registers exchange digits regarding mask used. ALU
output can be sent to external device via IO bus.
IO bus is fed directly from ALU output, but before BCD correction takes place, so IO bus can contain
hexadecimal digits on all places. All input digits are always processed with ALU — regardless of mask
used! — and sent to IO bus. Carry to next digit is computed based on BCD corrected value. If such
conditions occur, result value is not correct! Moreover, after this value is read back to register to be
processed, BCD correction is applied and carry bits are again generated and processed. As a result,
carry bits seem to be doubled for addition or even result seems to be totally wrong for subtraction.
For example: 9999999F+00000001 has correct result 00000000, but after IO operation has been
processed, IO bus transfers value AAAAAAA0. After this value is read back to working register, this
value becomes 11111100 due to BCD correction applied. Subtraction example looks more strange:
00000000-00000001 should be 9999999F, but real IO data is FFFFFFFF. After reading this value back
to register, this value is corrected to 6666665F. (Note: these examples contain values shortened to 8 digits only.)
Arithmetic operation always changes R5 register regarding result of operation. Always result digit with
position of mask constant is placed to R5 register.
List of all destinations:
Destination Description

A Result is written to selected register in CPU

B

C

D

IO Result is written to IO bus (used to write to SCOM register or RAM register)

AxB Exchange contents of selected registers

CxD

AxE

MOV

MOV reg,R5 flagA, flagB, KR

Store R5 content to flag register, bits 4..1
MOV R5,reg flagA, flagB, KR

Store nibble from flag register bits 4..1 to R5 register.
MOV R5,#const

Store constant nibble from instruction word to R5 register.

© 2014 Hynek Sladký; sladky@mujmail.cz

mailto:sladky@mujmail.cz

HW programming guide for calculators TI–58/59 17

MOV reg.mask,#const A, B, C, D, IO
MOV reg.mask,#-const A, B, C, D, IO

Store mask constant to selected ALU register. This instruction uses ALU with no-operation.

ADD, SUB

ADD|SUB dst.mask,srcX,srcY A, B, C, D, IO, #0, #const

Arithmetic addition or subtraction. COND is reset if there is overflow or underflow on highest digit in
mask. ALU input srcX can be A, C or #0. ALU input srcY can be B, D, #const or IO.
Example for constant ROM addressing and using follows:

0450: 0085 SET KR[8]
01D8 MOV A.ALL,#-0
0A67 MOV R5,#6
0A18 MOV KR,R5
0CC0 ADD A.MAEX,A,const

SHR, SHL

SHR|SHL dst.mask,reg ...
SHR|SHL dst.mask,reg,#const ...

Arithmetic digit shift to right or left. Const digit position can be or-ed before shift with constant from
mask.
SHR instruction doesn't go through ALU.
SHL instruction uses ALU before shift is made. ALU operation provides BCD correction for digits D1 to
D15, unfortunately before shift is made. This can lead to D1 value out of BCD range: if DPT/D0 has
value higher than 9 and SHL.ALL is executed, EXP LSB/D1 receives this value without BCD correction,
because DPT is not BCD corrected.

Control instructions
This group of instructions can influence program flow. These instructions can delay program execution
or alter program counter value. Also SET KR[1] belongs to this group as it sets PREG bit which leads to
change of program counter.

KEY

KEY mask ...

This instruction has two different ways of operation. The behavior depends on bit 3 in mask value.
Other bits in mask select which inputs are used for operation. Input bits are selected for scan if
appropriate bit is zero.
Note that input KR is never used in TI-58. KR input is always tested with TST BUSY instruction.

Input KT KS KR KQ MODE KP KO KN

Value 6 5 4 3 2 1 0

If MODE bit is set, keyboard inputs selected with mask are scanned immediately and COND bit is
cleared if any of selected inputs is active.
If MODE bit is cleared, keyboard is scanned until digit counter reaches zero or any selected keyboard
input is active. HOLD bit is set all the time keyboard scanning is active. If keyboard input is active
COND bit is cleared and KR register is filled with key scancode and keyboard scanning is terminated
immediately. If no key is pressed, COND bit remains set. Key input codes are mentioned in previous
table, keycode format is described in following table.

0 0 0 0 0 Key input Digit count 0 0 0 0

Keycode in KR register is often used as branch address after KR[1] is set (PREG instruction).
SR register can be used before KEY instruction to save previous KR content.

© 2014 Hynek Sladký; sladky@mujmail.cz

mailto:sladky@mujmail.cz

18 HW guide for calculators TI–58/59

WAIT

WAIT Dn

Holds program execution until specified digit cycle. Digit time must be specified by 1 higher than
requested. Note that digit counter is decremented every instruction cycle.

WAIT BUSY

...unknown behavior...

BRA

BRA0|1 +|-offs

Relative conditional jump instruction is executed in program memory ICs. Program counter doesn't
reside in CPU, CPU provides control bits HOLD, COND, PREG only. These bits control program
counter operation and BRA operation too.
Offset can be up to 0x3FF, i.e. +/-1023. COND bit is set after executing last jump instruction in series,
i.e. if more than one jump is executed (long jump needed), COND bit remains the same (reset) for all
jumps in series.
There are two special BRA opcodes: BRA +1 is used to clear COND bit (opcodes 1002 and 1802);
BRA 0 is used in debugger as HALT instruction (1001 and 1801).

Peripheral instructions
Peripheral instructions control peripheral behavior. CPU executes no-operation. Some instructions use
or generate data on EXT signal, some instructions use data on IO bus. If IO bus is used, read access
takes part of data selected by mask, whereas write access stores all digits from IO bus.

STO, RCL

Instructions are used to control SCOM register access.
SCOM write access is executed after Store F instruction is executed. Address is taken from last I/O
access before STO/RCL instruction. Note that if no IO access precedes RCL or STO instruction,
address of 0 is used.
It seems, that SCOM registers can be accessed from own program ROM only. STO and RCL
instructions are decoded immediately after loaded from ROM array to be shifted out of SCOM.
SCOM write access example:

0121 MOV IO.ALL,C
0A0F STO
0101 MOV IO.ALL,A

SCOM read access example:
0111 MOV IO.ALL,B
0A1F RCL
01D4 MOV C.ALL,#0 ;read IO

RAM_OP

This instruction is used to control RAM access. Next instruction cycle must hold command and address
for RAM access. RAM address uses digits 2 and 3 (IO[3]*10+IO[2]). If write access is requested, over-
next instruction cycle IO data are written to specified RAM register. If read access is requested, over-
next instruction cycle IO data are read and copied regarding used mask to destination register.

ADDR OP

RAM commands:

© 2014 Hynek Sladký; sladky@mujmail.cz

mailto:sladky@mujmail.cz

HW programming guide for calculators TI–58/59 19

RAM command Description

0 read RAM register

1 write RAM register

2 clear 1 RAM register

4 clear 10 successive RAM registers

RAM write access example:
03D0 MOV A.DPT,#1
0AF8 RAM_OP
0101 MOV IO.ALL,A
0101 MOV IO.ALL,A

RAM read access example:
02D8 MOV A.DPT,#-0
0AF8 RAM_OP
0101 MOV IO.ALL,A
0CD3 MOV B.MAEX,#0 ;read IO

IO bus is in output mode for all ALU operations with IO as output destination. Otherwise IO is input. This
can be confirmed with ALU operation not using IO but with IO bus active (e.g. RAM output active).

LIB

These instructions are used to access Second ROM library chip. All data transfer is done through EXT
bus.
Two instructions access library module address pointer. This access is done by one BCD nibble.

OUT LIB_PC

One nibble from EXT bus (bits 7 to 4 in KR register) is written to library address register. Before nibble
is written, address is shifted to the right and most significant nibble is written.

IN LIB_PC

Least significant nibble is read out from library address register. The contents of this register is then
shifted right by one nibble.

Another two instructions are used to get data out of library module chip. Byte addressed with address
pointer is sent through EXT signal.

IN LIB

EXT signal contains whole byte of data from library ROM. After MOV KR,EXT instruction is executed,
KR contains this byte in bits 11 to 4. Moreover, internal address register is incremented after data has
been sent. TI-58/9 uses low nibble only.

IN LIB_HIGH

EXT signal contains high nibble only. This nibble can be read with MOV KR,EXT to bits 7 to 4 of KR
register. Address register is not incremented.

PRT

Printer is controlled with TMC0251. Some aspects are described in U.S. Pat.
4020465. Communication principles are mentioned in TI-59 service manual. Printer
codepage table is provided in U.S. Pat. 4153937.
This chapter provides mostly programming description – i.e. instructions used for
printer control. Printer control is placed through all ROM. There is no specific place
with print routines only.
Connection uses these signals: KR, KP, KN, Phi1, D0, D15, IRG, IDLE, EXT, Phi2,
D12

© 2014 Hynek Sladký; sladky@mujmail.cz

mailto:sladky@mujmail.cz

20 HW guide for calculators TI–58/59

Printer detection: D0-KP
Control buttons: ADV = D12-KN; PRINT = D12-KP; TRACE = D15-KP (this control is on/off button
instead of push button; in TRACE mode, this signal is permanently connected)
Signal BUSY (KR) is connected directly from TMC0251 to CPU. It is probably valid after STEP or FEED
instruction has been executed.
Printer uses special character table (see picture above).
Printer has possibility to print names 3 characters long using 1 data byte. All known function names are
summarized in table below:
Code Text

00 ___ 17 _×_ 23 DPT 33 x²_ 53 PRM 61 SUM 70 ERR 76 HLT

11 _=_ 1A x√Y 26 CE_ 36 1/x 54 _%_ 66 STO 71 _(_ 78 STP

12 _-_ 1B Yx_ 27 +/- 3C √x_ 56 COS 67 _π_ 72 _)_ 7A GTO

13 _+_ 21 CLR 2D EE_ 3D X↔Y 57 SIN 68 RCL 73 LRN 7C IF_

16 _÷_ 22 INV 31 ex_ 51 LNx 5D TAN 69 ∑+_ 74 RUN

Printer has 20 character buffer which is addressed from right to left. i.e. texts are entered last character
first...

OUT PRT

Character is added from EXT signal (KR bits 4 to 9) to print buffer and buffer pointer is moved 1 position
to the left.

OUT PRT_FUNC

Add function name (3 characters – see table above) to the print buffer and move buffer pointer
accordingly.

PRT_CLEAR

Clear print buffer and initialize buffer pointer to most right position.
PRT_STEP

Fill current buffer position with blank character and move buffer pointer 1 position to the left. Also output
busy signal to KR next instruction cycle to be tested with TST BUSY instruction.

PRT_PRINT

Print characters from buffer to the paper and advance paper by one print line.
PRT_FEED

Feed paper by half print line. Printer is busy (see PRT_STEP instruction) until paper is moved.
When simulating, there should be some time holding KR input when this instruction is processed — TI-
58 sends PRT_FEED all the time printer or calculator button is held as soon as KR signal is released. If
KR is not emulated for this instruction, PRT_FEED is sent repeatedly in fast loop producing more than
expected paper feed.

CRD

Reader detection: no D7-KR connection (TI-59 mode)
Card detection: D10-KR (normally closed)
Technical details are described in U.S.pat. 4006455.
Reader chip can control HOLD and COND bits.
HOLD bit can be activated when executing CRD_READ or CRD_WRITE instruction and card reader
chip needs more time to complete requested task (see Fig. 2 and 3 in U.S.pat.).
Reader chip has some basic error check built in. If there are two and more errors, COND bit is
activated. COND bit is activated also in conjunction with “Card Sense Input”; this function is described
as protection and it seems that it was intended to provide hardware write protection for read-only cards.
I haven't found any information about this function.
COND bit is driven after CRD_OFF instruction is executed and until BRA instruction clears again this
bit. It seems, that this bit is checked for read access only. CRD_OFF for write access doesn't use this

© 2014 Hynek Sladký; sladky@mujmail.cz

mailto:sladky@mujmail.cz

HW programming guide for calculators TI–58/59 21

bit and immediately COND clear instruction is executed.

This group of instructions is used to control card reader. Routines used to work with card reader are
placed in ROM at addressed 16B2 to 1796.

CRD_OFF

Switch reader off. If COND bit is active, it is output until BRA is executed.
CRD_READ

Switch reader on for reading. HOLD bit can be active if card reader is not ready to continue.
CRD_WRITE

Switch reader on for writing. HOLD bit can be active if card reader is not ready to continue.
IN CRD

Reader chip sends 8 bits of data read from card to EXT bus. Must be always preceded with CRDREAD
instruction and followed with MOV KR,EXT instruction. Data bits are then placed to bits KR[11..4].

OUT CRD

Reader chip accepts 8 bits of data from EXT bus to be written to card. Must be always preceded with
CRDWRITE instruction. Data bits are taken from KR[11..4].
Card data structure

Size Format Description

1 1n Memory partitioning information. Holds page count (10 registers long) for program
storage. Possible values are 12, 13, … 1C

1 1n Data type on card. 11 is for program, 10 is for data or program/data card.

1 1n Page number. Can be 10, 13, 16 and 19 for cards #1, 2, 3 and #4.

1 n0 Protection status. 00 if program is unprotected, 10 means program is protected against
listing, single-stepping, interrupting or another debugging technique.

30 x 8 ab cd ef gh
ij kl mn op

Data starting with first register. badcfehgjilkn is mantissa, mp is exponent, o holds
sign bits (digit 0 in register). Program codes are stored starting with digits 1 and 0 (i.e.
nibble swapped): po nm lk ji hg fe dc ba.

2 0n 0n Check sum bytes. (twice the same value)

Examples:
12 10 10 00 … Card #1 for 159.99 partitioning
13 11 10 00 … Card #1 for 239.89 partitioning
1C 11 10 00 … Card #1 for 959.00 partitioning
16 11 13 00 … Card #2 for 479.59 partitioning
16 10 16 00 … Card #3 for 479.59 partitioning
16 10 19 00 … Card #3 for 479.59 partitioning

CPU instruction list
List of all known instructions:

Op-code Instruction Mnemonic CO
ND

R5 Description

0 0000 ssss 0000 TEST FLAG A TST FA[s] • Test bit in flagA register

0 0000 ssss 0001 SET FLAG A SET FA[s] Set bit in flagA register

0 0000 ssss 0010 ZERO FLAG A CLR FA[s] Clear bit in flagA register

0 0000 ssss 0011 INVERT FLAG A INV FA[s] Invert bit in flagA register

0 0000 ssss 0100 EXCH. FLAG A B XCH FA[s],FB[s] Exchange bit between flagA and flagB registers

0 0000 ssss 0101 SET FLAG KR SET KR[s] Set bit in KR register

0 0000 0001 0101 PREG
SET FLAG KR[1]

SET PREG Set KR[1] bit; this bit is then sent as PREG to EXT bus and then
cleared

0 0000 ssss 0110 COPY FLAG B → A MOV FA[s],FB[s] Copy bit from flagB to flagA register

© 2014 Hynek Sladký; sladky@mujmail.cz

mailto:sladky@mujmail.cz

22 HW guide for calculators TI–58/59

Op-code Instruction Mnemonic CO
ND

R5 Description

0 0000 oooo 0111 REG 5 → FLAG A MOV FA,R5 Set flagA[4..1] according to R5 value

0 0000 ssss 1000 TEST FLAG B TST FB[s] • Test bit in flagB register

0 0000 ssss 1001 SET FLAG B SET FB[s] Set bit in flagB register

0 0000 ssss 1010 ZERO FLAG B CLR FB[s] Clear bit in flagB register

0 0000 ssss 1011 INVERT FLAG B INV FB[s] Invert bit in flagB register

0 0000 ssss 1100 COMPARE FLAG A B CMP FA[s],FB[s] • Compare bit from flagA and flagB registers

0 0000 ssss 1101 ZERO FLAG KR CLR KR[s] Clear bit in KR register

0 0000 ssss 1110 COPY FLAG A → B MOV FB[s],FA[s] Copy bit from flagA to flagB register

0 0000 oooo 1111 REG 5 → FLAG B MOV R5,FB Set flagB[4..1] according to R5 value

0 0001 rrrr sSSS All Mask .ALL [0000000000000000]

0 0010 rrrr sSSS DPT .DPT [_______________0]

0 0011 rrrr sSSS DPT 1 .DPT1 [_______________1]

0 0100 rrrr sSSS DPT C (4) .DPTC [_______________C]

0 0101 rrrr sSSS LLSD 1 (9) .LLSD1 [____________1___]

0 0110 rrrr sSSS EXP .EXP [_____________00_]

0 0111 rrrr sSSS EXP 1 (9) .EXP1 [_____________01_]

0 1000 TSRQ 0PON keyboard KEY mask • Scan keyboard starting with current digit output until digit 0 is
reached or until key press is detected.
This instruction is often preceded with WAIT Dn instruction.
Output is stored in KR[10..4] bits = [ccc] [rrrr], where:
ccc=0..6 for KN, KO, KP, KR, KS, KT inputs; current keyboard uses
rows 1, 2, 3, 5, 6 only (left to right)
rrrr=0..15 for D0 to D15; current keyboard uses rows 1..9 only (top
to bottom)

0 1000 TSRQ 1PON keyboard KEY mask • One keyboard row test.
Masks used: FB, FD, FE, EF – all have only one input active.

0 1001 rrrr sSSS MANT .MANT [0000000000000___]

0 1010 dddd 0000 WAIT D WAIT digit Wait until specified digit time arrives (/D)

0 1010 oooo 0001 Zero Idle CLR IDLE Clear IDLE bit (switch to RUN mode)

0 1010 oooo 0010 CLFA CLR FA Clear all flagA bits

0 1010 0011 Wait Busy WAIT BUSY (never used in TI-58)

0 1010 oooo 0100 INCKR INC KR KR[0,15..4] value increment (KR[0] is top most bit!)

0 1010 ssss 0101 TKR TST KR[s] • Test bit in KR register

0 1010 ooo0 0110 COPY FLGA → R5 MOV R5,FA • Set R5 to flagA[4..1] value

0 1010 ooo1 0110 COPY FLGB → R5 • Set R5 to flagB[4..1] value

0 1010 dddd 0111 Number MOV R5,#const • Put number into R5

0 1010 0000 1000 KR → R5 MOV R5,KR • Load R5 with LSD of keyboard reg KR[7..4]

0 1010 0001 1000 R5 → KR MOV KR,R5 Load LSD of keyboard reg KR[7..4] with R5

0 1010 0010 1000 DR8EXT IN CRD Output data from card reader chip to EXT (8 bits: KR[11..4])

0 1010 0011 1000 EXTDR8 OUT CRD Write data from EXT (8 bits KR[11..4]) to card reader chip

0 1010 0100 1000 TOFF CRD_OFF • Switch card reader off

0 1010 0101 1000 RDON / RDNT CRD_READ Switch card reader to read mode. If reader is not ready, this
instruction can drive HOLD bit.

0 1010 0110 1000 LOAD OUT PRT Write to print buffer and decrement pointer (6 bits: KR[9..4])

0 1010 0111 1000 FUNCTION OUT PRT_FUNC Write function name to buffer (7-bit code: KR[10..4])

0 1010 1000 1000 CLEAR PRT_CLEAR Clear print buffer and reset print position @ 20

0 1010 1001 1000 STEP PRT_STEP Decrement print buffer pointer

0 1010 1010 1000 PRINT PRT_PRINT Set print buffer pointer to 0 (i.e. starts printing)

0 1010 1011 1000 PAPER ADVANCE PRT_FEED Paper feed

0 1010 1100 1000 WRON CRD_WRITE Switch card reader to write mode. If reader is not ready, this
instruction can drive HOLD bit.

© 2014 Hynek Sladký; sladky@mujmail.cz

mailto:sladky@mujmail.cz

HW programming guide for calculators TI–58/59 23

Op-code Instruction Mnemonic CO
ND

R5 Description

0 1010 1111 1000 RAM in/out RAM_OP RAM access instruction.
RAM address and command is decoded from IO bus on next
instruction cycle.
RAM data is transferred (based on command: from or to RAM) in
after next IO cycle.

0 1010 oooo 1001 Set Idle SET IDLE Set IDLE bit, i.e. switch to IDLE mode (displaying is enabled, CPU
runs slow)
Transition from RUN to IDLE synchronizes CPU with SCOM; for
correct behavior, this instruction must bee preceded with WAIT D1

0 1010 oooo 1010 CLFB CLR FB Clear all flagB bits

0 1010 oooo 1011 Test Busy TST BUSY • Test BUSY input signal. This signal is connected to KR input.
To scan requested input, WAIT Dn must precede TST BUSY.

0 1010 0000 1100 EXT KR MOV KR,EXT Load keyboard reg with EXT data. If no data is currently on the
EXT bus, this instruction clears KR register.

0 1010 oooo 1101 XKRSR XCH KR,SR Exchange SR and KR bits

0 1010 oo?? 1110 NO-OP Instructions for peripherals

0 1010 0000 1110 FETCH IN LIB Load byte from SecondROM through EXT to KR[11..4] in next
instruction cycle with automatic address post-increment.

0 1010 0001 1110 LOAD PC OUT LIB_PC Put 4-bit part of address counter to SecondROM through EXT from
KR[7..4]

0 1010 0010 1110 UNLOAD PC IN LIB_PC Load 4-bit part of address counter from SecondROM through EXT
to KR[7..4] in next instruction cycle

0 1010 0011 1110 FETCH HIGH IN LIB_HIGH Load 4-bit high nibble from SecondROM through EXT to KR[7..4]
in next instruction cycle

0 1010 rrr0 1111 Register SCOM register write (TI-58 uses opcode 0A0F only)

0 1010 rrr1 1111 SCOM register read (TI-58 uses opcode 0A1F only)

0 1010 0000 1111 Store F STO F ...

0 1010 0010 1111 Store G Not used in TI-58

0 1010 0001 1111 Recall F RCL F ...

0 1010 0011 1111 Recall G Not used in TI-58

0 1011 rrrr sSSS MLSD 5 .MLSD5 [0000000000005___]

0 1100 rrrr sSSS MAEX .MAEX [000000000000000_]

0 1101 rrrr sSSS MLSD 1 .MLSD1 [0000000000001oo_]

0 1110 rrrr sSSS MMSD 1 .MMSD1 [1000000000000oo_]

0 1111 rrrr sSSS MAEX 1 .MAEX1 [000000000000001_]

 0000 0 A+<mask> ADD _,A,#const • •

 0000 1 A-<mask> SUB _,A,#const • •

 0001 0 B|<mask> OR _,B,#const • •

 0001 1 -(B|<mask>) NEG _,B|#const • • Nonzero mask only once (071B=SUB.EXP B,#0,B|#1)

 0010 0 C+<mask> ADD _,C,#const • •

 0010 1 C-<mask> SUB _,C,#const • •

 0011 0 D|<mask> OR _,D,#const • •

 0011 1 -(D|<mask>) NEG _,D|#const • • Never used with nonzero mask.

 0100 0 Shift left A SHL _,A[,#const] • Const is or-ed with register before shift... But never used with
nonzero mask in TI-58...

 0100 1 Shift right A SHR _,A[,#const] •

 0101 0 Shift left B SHL _,B[,#const] •

 0101 1 Shift right B SHR _,B[,#const] •

 0110 0 Shift left C SHL _,C[,#const] •

 0110 1 Shift right C SHR _,C[,#const] •

 0111 0 Shift left D SHL _,D[,#const] •

 0111 1 Shift right D SHR _,D[,#const] •

 1000 0 A+B ADD _,A,B[|#const] • •

© 2014 Hynek Sladký; sladky@mujmail.cz

mailto:sladky@mujmail.cz

24 HW guide for calculators TI–58/59

Op-code Instruction Mnemonic CO
ND

R5 Description

 1000 1 A-B SUB _,A,B[|#const] • •

 1001 0 C+B ADD _,C,B[|#const] • •

 1001 1 C-B SUB _,C,B[|#const] • •

 1010 0 C+D ADD _,C,D[|#const] • •

 1010 1 C-D SUB _,C,D[|#const] • •

 1011 0 A+D ADD _,A,D[|#const] • •

 1011 1 A-D SUB _,A,D[|#const] • •

 1100 0 A+constant/io ADD _,A,IO[|#const] • • Operations with data from SCOM constant ROM...
Never used with nonzero mask (all IO instructions for A and C)

 1100 1 A-constant/io SUB _,A,IO[|#const] • •

 1101 0 NO-OP MOV _,#const ? • Load data from IO bus; used for SCOM/RAM reading
Behavior if mask is not zero??? IMHO or-ing with loaded value...
(Used for MOV reg,#<mask>)

 1101 1 NO-OP MOV _,#-const • • Used for MOV reg,#-<mask>

 1110 0 C+constant/io ADD _,C,IO[|#const] • •

 1110 1 C-constant/io SUB _,C,IO[|#const] • •

 1111 o R5 → Adder MOV _,R5[|#const] ? • Mask LSD
Never used with Sub operation...
Used once with nonzero mask (0EF3=MOV.MMSD B,R5|#1 ??)

 000 Σ → A ___ A,

 001 Output I/O ___ IO, Send result to I/O bus

 010 A ↔ B XCH A,B ALU operation still executes but without storing result!

 011 Σ → B ___ B,

 100 Σ → C ___ C,

 101 C ↔ D XCH C,D ALU operation still executes but without storing result!

 110 Σ → D ___ D,

 111 A ↔ E XCH A,E ALU operation still executes but without storing result!

1 Caaa aaaa aaa0 Branch +A BRA0 offs
BRA1 offs

• Branch if COND = bit C
COND bit is set after last BRA instruction in series

1 Caaa aaaa aaa1 Branch -A •

x x11x 0xxx xxxx Recall constant – see SCOM decoder
But regarding to captured data it is not right... I would expect 0A.F
opcodes

External debugger
Debugger used to discover many secrets of TMC-0501 and other chips in TI-58.
Based on STM32F4xx MCU running at 64MHz.
Debugger can drive EXT and IRG signals. If user program has to be run, EXT signal is driven with
address and PREG bit set to force all program chips to jump to desired address. This signal is sent until
HOLD bit is detected active to be sure that all chips take this new address into account. It seems that
HOLD bit has higher priority than PREG bit...
Debugger uses unused ROM area from address 0x1800 up.
EXT and IRG signals are monitored to see instruction trace. Sometimes EXT signal was used to trace
output data. Later, test programs used display to show test results.

Test program examples

Simple count test

This test simply displays counter. It assumes IDLE mode is selected. Incrementing speed is about 1185
loops per second.

© 2014 Hynek Sladký; sladky@mujmail.cz

mailto:sladky@mujmail.cz

HW programming guide for calculators TI–58/59 25

1800: 01D8 MOV A.ALL,#0
01DB MOV B.ALL,#0

1802: 0D00 ADD A.MLSD,A,#1
0A37 MOV R5,#3
1805 BRA1 -2 ;1802
1007 BRA0 -3 ;1802

Stopwatch

This example is more complex. It uses WAIT Dn instruction to make timing more precise (without
counting instructions). Increment cycle repeats 222 times per second (455kHz÷2÷16÷16), increment
value should be 4.5010989ms. Attention should be payed to DPT digit, which is hexadecimal (no BCD
correction). Also R5 register should be always set to correct value to display seconds and milliseconds
correctly after ALU instruction.

;initialization
1800: 01D8 MOV A.ALL,#0

01DB MOV B.ALL,#0
;display mask to correctly display last digit

07DB MOV B.EXP,#-1 ;#99
01DE MOV D.ALL,#0

;4.50ms step value
0A47 MOV R5,#4
02F6 MOV D.DPT,R5
0176 SHL D.ALL,D
0A57 MOV R5,#5
02F6 MOV D.DPT,R5
0176 SHL D.ALL,D

;stopwatch is not running here
;wait for key press
;R5 contains DPT (decimal point) position
180A: 0A57 MOV R5,#5

0A30 WAIT D3
;test CLR key

087F KEY 7F
1804 BRA1 +2 ;180F

;clear counter
01D8 MOV A.ALL,#0

;test R/S key
180F: 0AA0 WAIT D10

08FD KEY FD
180F BRA1 -7 ;180A

;stopwatch is running here
;wait for R/S key released
1812: 01B0 ADD A.ALL,A,D

0A57 MOV R5,#5
1002 BRA0 +1 ;1815

1815: 0AA0 WAIT D10
08FD KEY FD
100B BRA0 -5 ;1812

;stopwatch is still running here
;wait for R/S key pressed
1818: 01B0 ADD A.ALL,A,D

0A57 MOV R5,#5
1002 BRA0 +1 ;181B

181B: 0AA0 WAIT D10

© 2014 Hynek Sladký; sladky@mujmail.cz

mailto:sladky@mujmail.cz

26 HW guide for calculators TI–58/59

08FD KEY FD
180B BRA1 -5 ;1818

;stopwatch is not running here anymore
;wait for R/S key released
181E: 0AA0 WAIT D10

08FD KEY FD
1005 BRA0 -2 ;181E
182F BRA1 -23 ;180A

DPT test

This example is little bit tricky. It changes R5 for every digit displayed so DPTs are displayed for every
digit position.

1800: 0AF0 WAIT D15
0AD7 MOV R5,#13
0AC7 MOV R5,#12
0AB7 MOV R5,#11
0AA7 MOV R5,#10
0A97 MOV R5,#9
0A87 MOV R5,#8
0A77 MOV R5,#7
0A67 MOV R5,#6
0A57 MOV R5,#5
0A47 MOV R5,#4
0A37 MOV R5,#3
0A27 MOV R5,#2
181B BRA1 -13 ;1800

7-segment decoder test

This test is also little bit tricky. It uses “bad” digit synchronization to display DPT on LED. As DPT is
hexadecimal, this allows to display all combinations available in 7-segment decoder. Value displayed is
BB.AAX, where BB is value in B.DPT, AA is value in A.DPT and X is resulting 7-segment digit.
Because of illegal synchronization, some keys behave strange! (RCL makes CPU reset, LRN row
doesn't work, BST row doesn't detect key press but increment is done until keys are held – this can be
useful to test higher values...)
Note: B.DPT can't be used to increment using mask value because B is on the same ALU input as
mask constant, so B (or D) is or-ed with this constant instead of adding it.

1800: 0A01 CLR IDL
01D0 MOV A.ALL,#0

;prepare digit mask to B register: 99990
01D3 MOV B.ALL,#0
07DB MOV B.EXP,#-1
0153 SHL B.ALL,B
0153 SHL B.ALL,B
07DB MOV B.EXP,#-1
01D4 MOV C.ALL,#0

;set IDLE but shifted so DPT is visible
0AC0 WAIT D12
0A09 SET IDL

;main loop
; wait for key press
180A: 0AE0 WAIT D14

0820 KEY 20
180C BRA1 +6 ;1812
0A45 TST KR[4]

© 2014 Hynek Sladký; sladky@mujmail.cz

mailto:sladky@mujmail.cz

HW programming guide for calculators TI–58/59 27

0A55 TST KR[5]
0A65 TST KR[6]
0A75 TST KR[7]
100F BRA0 -7 ;180A

;check key press = debounce key
1812: 0AE0 WAIT D14

0820 KEY 20
1805 BRA1 -2 ;1812

;increment A.DPT
0300 ADD A.DPT,A,#1
1806 BRA1 +3 ;1819

;increment C.DPT if carry
0324 ADD C.DPT,C,#1

;and copy C.DPT to B.DPT
0223 ADD B.DPT,C,#0

;copy A.DPT to display the number
1819: 01D6 MOV D.ALL,#0

0206 ADD D.DPT,A,#0
0176 SHL D.ALL,D
0630 ADD A.EXP,#0,D

;copy C.DPT to display the number
01D6 MOV D.ALL,#0
0226 ADD D.DPT,C,#0
0176 SHL D.ALL,D
0176 SHL D.ALL,D
0176 SHL D.ALL,D
0930 ADD A.MANT,#0,D

;clear COND
1002 BRA0 +1 ;1824

;set DPT position
1824: 0A37 MOV R5,#3

1837 BRA1 -27 ;180A

Undiscovered secrets
List of unclear or still hidden things...

• WAIT BUSY opcode function is still unknown – never used in TI-58 ROM
• Strange that KR[7] is not used for constant addressing (SCOM constant ROM)
• RAM addressing produces some unclear digits when accessing address higher than 99. No

idea if it is by-product of address calculation only.
• Unsure about COND bit for NO-OP and R5→adder ALU operation
• SAC DC-59: how it works?

Reference
U.S.pat 3900722

CPU a SCOM description; easy calculator implementation example including ROM dump (2x
1KB SCOM).

U.S.pat 4153937
Second ROM description – library storage and access description. ROM double SCOM and
First ROM dump for TI-58 (unreadable!). Program codes. Printer codepage (Table VII).

U.S.pat 4006455
Magnetic card reader description.

© 2014 Hynek Sladký; sladky@mujmail.cz

mailto:sladky@mujmail.cz

28 HW guide for calculators TI–58/59

U.S.pat 4020465
Printer description.

TI-5x service manual
Internal service information, TI-59 schematics, printer operation principles, RAM test program.

AR magazin, Construction appendix, 1985, pages 60-65
Schematics for TI-58, TI-58C, TI-59, PC-100A

Credits
Thanks to Hrast for first functional emulator for TI-58/59 and printer
(www.hrastprogrammer.com/emulators.htm)

© 2014 Hynek Sladký; sladky@mujmail.cz

mailto:sladky@mujmail.cz
http://www.hrastprogrammer.com/emulators.htm

	Block diagram
	TI-59 Schematics
	Power supply
	Signals
	Processor TMC 0501
	Display
	Keyboard
	Signals PHI1 a PHI2
	Signal IDLE
	Signal EXT
	Signal IRG

	ICs SCOM TMC 0582/3
	SCOM Data Registers
	SCOM constant memory

	RAM memory
	Library ROM
	CPU Programming Reference
	CPU Registers
	Flag instructions
	CLR
	SET
	INV
	XCH
	MOV
	TST
	INC

	Arithmetic instructions
	MOV
	ADD, SUB
	SHR, SHL

	Control instructions
	KEY
	WAIT
	BRA

	Peripheral instructions
	STO, RCL
	RAM_OP
	LIB
	PRT
	CRD

	CPU instruction list

	External debugger
	Test program examples
	Simple count test
	Stopwatch
	DPT test
	7-segment decoder test

	Undiscovered secrets
	Reference
	Credits

